2023年第4号

国家铁路局关于发布铁道行业标准的公告 (工程建设标准 2023 年第 2 批)

为适应高速铁路大跨度桥梁建设需要,优化大跨度桥梁轨道 铺设精度标准,推动铁路科学技术进步和铁路建设运营迈向更高 水平,拟对《高速铁路轨道工程施工质量验收标准》TB 10754-2018 等3项铁路工程建设标准相关内容进行局部修订。现公布局 部修订条文,自公布之日起实施。

一、《高速铁路轨道工程施工质量验收标准》TB 10754-2018
(一)修改第17.2.1条。

正文修改为:经精调整理后,无砟轨道静态铺设精度应符合表 17.2.1 的规定。

序号	项目	允许偏差	备注
1	枯取	±1mm	相对于标准轨距 1435mm
	制此	1/1500	变化率
		2mm	弦长 10m
2	轨向	2mm/ (8a) m 10mm/ (240a) m	基线长 (48a) m 基线长 (480a) m
		2mm	弦长 10m
3	高低	2mm/ (8a) m 10mm/ (240a) m	基线长 (48a) m 基线长 (480a) m
		* 10mm (250km/h) * 8mm (300km/h) * 7mm (350km/h)	弦长 60m
4	水平	2mm	不包含曲线、缓和曲线上的超高值
5	扭曲	2mm	基长 3m 不含缓和曲线上由于超高顺坡所 造成的扭曲量
6	与设计高程偏差	±10mm	站台处的轨面高程不应低于设计值。对于 主跨 200m~400m 桥梁,为设计基准温度 下的轨面高程与设计高程偏差
7	与设计中线偏差	10mm	

表 17.2.1 无砟轨道静态铺设精度

注:1 表中 a 为扣件节点间距 (m);8a,240a 为矢距法检测测点间距。

2 轨向偏差不含曲线。

3 *为主跨 200m~400m 桥梁的轨道静态高低长波不平顺采用 200m 高通滤波后 60m 弦 中点弦测值,替代基线长 (480a) m 间距 (240a) m 矢距差的高低偏差。

检验数量:施工单位连续检测;监理单位全部见证检验。

检验方法:施工单位采用全站仪及轨道几何状态测量仪检测,监理单位见证检验。

(二) 修改第17.3.1条。

正文修改为:经精调整理后,有砟轨道静态铺设精度应符合表 17.3.1 的规定。

序号	项目	允许偏差	备注
1 劫距		±2mm	相对于标准轨距 1435mm
	制此	1/1500	变化率
		2mm	弦长 10m
2	轨向	2mm/5m 10mm/150m	基线长 30m 基线长 300m
		2mm	弦长 10m
3	高低	2mm/5m 10mm/150m	基线长 30m 基线长 300m
		*10mm (250km/h)	弦长 60m
4	水平	2mm	不包含曲线、缓和曲线上的超高值
5	扭曲	2mm	基长 3m 不含缓和曲线上由于超高顺坡所 造成的扭曲量
6	与设计高程偏差	±10mm	站台处的轨面高程不应低于设计值。对于 主跨 200m~1100m桥梁,为设计基准温 度下的轨面高程与设计高程偏差
7	与设计中线偏差	10mm	

表 17.3.1 有砟轨道静态铺设精度

注:1 轨向偏差不含曲线。

2 * 为主跨 200m~1100m 桥梁的轨道静态高低长波不平顺采用 200m 高通滤波后 60m 弦中点弦测值,替代基线长 300m 间距 150m 矢距差的高低偏差。

检验数量:施工单位连续检测;监理单位全部见证检验。

检验方法:施工单位采用全站仪及轨道几何状态测量仪检测;监理单位全部见证检验。

二、《铁路轨道设计规范》TB 10082-2017

(一) 修改第3.3.1条。

正文修改为:高速铁路、城际铁路正线有砟轨道线路静态平顺度应符合表 3.3.1 的规定。

序	项目		容许偏差			
号			$250 \text{km/h} \leq V \leq 350 \text{km/h}$	V=200km/h	V=160km/h	V=120km/h
1	轨	相对于标准轨距	±2mm	±2mm	+4mm -2mm	+6mm -2mm
	距	变化率	1/1500	1/1500	_	
	劫	弦长 10m	2mm	3mm	4mm	4mm
2	向	基线长 30m 基线长 300m	2mm/5m 10mm/150m	3mm/5m 10mm/150m		
		弦长 10m	2mm	3mm	4mm	4mm
3	高低	基线长 30m 基线长 300m	2mm/5m 10mm/150m	3mm/5m 10mm/150m		
		弦长 60m	*10mm (250km/h)		_	
4		水平	2mm	3mm	4mm	4mm
5	扭曲	基线长 3m	2mm	2mm	3mm	3mm

表 3.3.1 高速铁路、城际铁路正线有砟轨道线路静态平顺度

注:1 轨向偏差不含曲线。

2 水平偏差不含曲线、缓和曲线上的超高值。

3 扭曲偏差不含缓和曲线上由于超高顺坡造成的扭曲量。

4 * 为新建高速铁路主跨 200m~1100m 桥梁的轨道静态高低长波不平顺采用 200m 高通 滤波后 60m 弦中点弦测值 (按附录 A 规定计算), 替代基线长 300m 间距 150m 矢距 差的高低偏差。

(二) 修改第3.3.6条。

正文修改为:高速铁路、城际铁路正线无砟轨道线路静态平顺度应符合表 3.3.6 的规定。

表 3.3.6 高速铁路、城际铁路正线无砟轨道线路静态平顺度

序	项目		容许偏差				
号			$250 \text{km/h} \leq V \leq 350 \text{km/h}$	V=200km/h	V=160km/h	V=120km/h	
1	轨 距	相对于标准轨距	±1mm	±2mm	±2mm	+3mm -2mm	
		变化率	1/1500	1/1500			

序	西日		容许偏差				
号		坝日	$250 \text{km/h} \leq V \leq 350 \text{km/h}$	V=200km/h	V=160km/h	V=120km/h	
	劫	弦长 10m	2mm	2mm	2mm	4mm	
2	向	基线长 48a (m) 基线长 480a (m)	2mm/8a (m) 10mm/240a (m)	3mm/8a(m) 10mm/240a(m)			
		弦长 10m	2mm	2mm	2mm	4mm	
3	高低	基线长 48a (m) 基线长 480a (m)	2mm/8a (m) 10mm/240a (m)	3mm/8a(m) 10mm/240a(m)			
		弦长 60m	*10mm (250km/h) *8mm (300km/h) *7mm (350km/h)				
4	水平		2mm	2mm	2mm	4mm	
5	扭 曲	基线长 3m	2mm	2mm	2mm	3mm	

注:1 轨向、高低栏中的 a 为无砟轨道扣件节点间距。

2 轨向偏差不含曲线。

3 水平偏差不含曲线、缓和曲线上的超高值。

4 扭曲偏差不含缓和曲线上由于超高顺坡造成的扭曲量。

5 *为新建高速铁路主跨200m~400m桥梁的轨道静态高低长波不平顺采用200m高通 滤波后60m弦中点弦测值(按附录A规定计算),替代基线长(480a)m间距 (240a)m矢距差的高低偏差。

(三)新增附录A。

1. 新增正文:

附录 A 轨道静态几何不平顺 60m 弦中点弦测值计算方法

A.0.1本方法适用于计算 200m 高通滤波后轨道静态几何不 平顺 60m 弦中点弦测值。

A.0.2 高速铁路大跨度桥梁受温度变形影响显著,为保证对 行车有影响的轨道长波不平顺评价的准确性,将波长 200m 以上 的长波成分滤除(轨道不平顺测量的采样距离不应大于扣件节点 间距)。设计的高通滤波器主要参数应符合下列规定:

1 通带边界空间频率为 0.005 (截止波长为 200m)。

2 在通带边界频率处,通带衰减不超过-3dB。

3 在阻带中至少有 24dB/倍频程的斜率。

4 宜采用巴特沃斯、切比雪夫4 阶滤波器,滤波器性能如图 A.0.2 所示。

图 A.0.2 设计滤波器滤波性能

A.0.3 轨道静态几何不平顺中点弦测值计算原理如图 A.0.3 所示。由于 $V'_i \approx V_i$, 当测量弦长为 L 时, 中点 i 点的轨道不平顺弦测值应按式 A.0.3 计算。计算 60m 弦中点弦测值时, L=60m, a=30m。

$$V_i \approx V'_i = h_i - (h_{i-a} + h_{i+a}) /2$$
 (A. 0. 3)

图中: 1——轨道不平顺 2——测弦 V:-----i点以L为弦长的中点弦测值 V;-----i点以L为弦长的中点弦测值的近似值 L-----弦长 a----半弦长, a=L/2 h_i、h_{i-a}、h_{i+a}——i、i-a、i+a 点轨道不平顺到基准轴的高程

图 A.0.3 中点弦测法示意图

2. 新增条文说明:

A.0.2 说明图 A.0.2 为典型轨道不平顺滤波前后的功率谱对 比,由图可知,滤波前后200m波长范围内的功率谱基本重合, 说明小于200m的波长成分没有因滤波而损失。

说明图 A. 0. 2 典型轨道不平顺 200m 高通滤波前后功率谱

- 7

A.0.3 样例。某桥上线路轨道静态高程偏差如说明图 A.0.3-1。 经 200m 高通滤波后的轨道高低不平顺如说明图 A.0.3-2。对说 明图 A.0.3-2 所示数据进行 60m 弦中点弦测值计算如说明图 A.0.3-3。

说明图 A. 0. 3-2 桥上线路 200m 高通滤波后轨道高低不平顺

说明图 A.0.3-3 桥上线路 200m 高通滤波后轨道高低不平顺的 60m 中点弦测值

— 8 —

三、《高速铁路设计规范》TB 10621-2014

(一) 修改表 9.2.1-1。

正文修改为:

表 9.2.1-1 正线轨道静态铺设精度标准

序号	项目	允许偏差	备注
1 轨距		无砟轨道±1mm 有砟轨道±2mm	相对于标准轨距 1435mm
		1/1500	变化率
		2mm	弦长 10m
2	轨向	2mm/(5或8a) m 10mm/(150或240a) m	基线长 (30 或 48a) m 基线长 (300 或 480a) m
		2mm	弦长 10m
3	高低	2mm/ (5或8a) m 10mm/ (150或240a) m	基线长 (30 或 48a) m 基线长 (300 或 480a) m
		*10mm (250km/h) *8mm (300km/h, 无砟轨道) *7mm (350km/h, 无砟轨道)	弦长 60m
4	水平	2mm	不包含曲线、缓和曲线上的超高值
5	扭曲	2mm	基长 3m 不含缓和曲线上由于超高 顺坡所造成的扭曲量
6	与设计高程偏差	±10mm	站台处的轨面高程不应低于设计 值。对于主跨 200m~400m 桥梁的 无砟轨道、主跨 200m~1100m 桥 梁的有砟轨道,为设计基准温度下 的轨面高程与设计高程偏差
7	与设计中线偏差	10mm	

注:1 表中轨向、高低栏中的 a 为无砟轨道扣件节点间距;允许偏差列中括弧内为矢距法检 测测点间距;备注列中括弧内为基线长,其中含 a 表达式适用于无砟轨道,与其对应 的具体数值适用于有砟轨道。

2 *为新建高速铁路主跨200m~400m桥梁的无砟轨道、主跨200m~1100m桥梁的有砟 轨道静态高低长波不平顺采用200m高通滤波后60m弦中点弦测值,替代基线长 (300或480a)m间距(150或240a)m矢距差的高低偏差。

(二) 补充第9.2.1条条文说明

补充条文说明:

1. 大跨度桥梁轨道静态高低长波不平顺验收

(1) 大跨度桥梁轨道工程验收现状

大跨度桥梁在温度、风、二期恒载以及施工偏差等因素的综 合作用下,长期处于坚向、横向、纵向、扭转变动状态中,变形 复杂,尤其垂向变形较大。验收阶段轨道铺设精度的测量结果不 仅包含了线路铺设精度偏差,也包含了桥梁施工偏差和温度变 形,尤其轨道静态高低长波不平顺和轨道高程受桥梁变形影响较 大,与路基区段的线路平顺状态差别显著。

(2) 国外高速铁路高低长波不平顺控制标准

对于高速铁路,各国都制定了高低长波不平顺控制标准。德国高速铁路无砟轨道采用 (300 或480a) m 基线的矢距差法评价,与我国现行标准一致。日本、法国、韩国、美国等采用基于固定弦长的中点弦测法进行评价,详见说明表9.2.1-1。国际标准化组织 (ISO) 发布的《铁路应用 轨道几何质量 第1部分:轨道几何及其质量描述》ISO 23054-1:2022,规定轨道不平顺的测量与评价可采用弦测法。

说明表 9.2.1-1 各国高低长波不平顺控制标准

项目	日本	法国	韩国	美国 (安全标准)
速度等级 (km/h)	160 以上	160 以上	300	322
弦长 (m)	40	31	30	37.8
限值 (mm)	7 ~ 10	10/8		19/13

注:"/"上为单个不平顺限值,"/"下为三个连续非重叠不平顺限值。

日本长期采用中点弦测法进行动静态不平顺管理。新干线轨 道长波高低不平顺采用 40m 弦中点弦测法评价,目前最高运营速 度为 320km/h,各铁路公司或研究机构针对轨道长波高低不平顺 制定了运维管理标准,详见说明表 9.2.1-2。日本学者研究表 明,40m 弦和 60m 弦中点弦测法可用于高速铁路长波不平顺的控 制,对于 300km/h 及以上高速铁路,采用 60m 弦测法更为合理。

说明表 9.2.1-2 日本新干线轨道长波高低不平顺运维管理标准

项目	JR ź	综研	JR 东日本	JR 东海	JR 西日本
速度等级 (km/h)	<240	240 ~ 300	240	270	270
限值 (mm)	10	7	10	7	8

(3) 大跨度桥梁轨道静态高低长波不平顺评判指标

中点弦测法计算公式从形式上近似于二阶差分,即轨道的二 阶导,几何特征上与轨道的曲率直接相关,而车体加速度主要受 速度和曲率的影响。因此,中点弦测法计算出的中点矢距能够很 好的反映车体加速度,我国现场精调作业也常采用不同弦长中点 弦测法进行控制。

同时,我国动态验收高低不平顺采用空间曲线评价,250km/h 速度等级线路需要管理到70m波长,300、350km/h速度等级线 路需要管理到120m波长,为保证线路达到动态验收要求,采用 的弦长需要涵盖120m波长范围。不同弦长控制的有效波长范围 并不相同,其传递函数见说明图9.2.1-1。由该图可以看出,对 于长波不平顺的控制采用60m弦长进行管理最为合理。

说明图 9.2.1-1 不同弦长控制的有效波长范围

铁路大跨度桥梁轨道静态高低不平顺受到桥梁变形的影响, 其最长波长与桥梁跨度相当,可达千米,但并非所有的波长均需 纳入管理,欧盟标准《铁路应用 轨道 轨道几何质量》EN 13848 和《铁路应用 轨道 施工验收》EN 13231 对高低不平顺的管理 波长为 150m,日本新干线对高低不平顺的管理波长为 100m。为 确定适合我国高铁大跨度桥梁的长波不平顺管理波长范围,构造 波长 40m ~ 300m 的连续余弦波,采用 380B 型动车组、速度 350km/h 进行仿真分析,结果表明车体加速度受 200m 及以上波 长影响很小;此外,对实测数据的分析表明,车速 180、240 和 300km/h 的三条典型线路实测车体加速度中 200m 及以上波长成 分的频谱占比最多为 0.15%,也证明 200m 及以上波长成分对车 体加速度影响很小。不同车速下 200m 及以上波长成分在车体加 速度中的频谱占比见说明表 9.2.1-3,车速 300km/h、南京南到 蚌埠南的车体加速度频谱与频率关系曲线见说明图 9.2.1-2。

检测车	日期	区段	里 程 (m)	时长 (s)	平均车速 (km/h)	占响应 比例
2061	2021.09.15	济南西到石家庄	31126-21165	300	240	0.15%
2061	2021.09.15	潍坊北到昌邑	5550-12354	90	182	0.12%
2061	2021. 09. 18	南京南到蚌埠南	867893-859887	80	300	0.08%

说明表 9.2.1-3 200m 及以上波长成分在车体加速度中的频谱占比

说明图 9.2.1-2 200m 及以上波长成分在车体加速度中的频谱占比

此外,为研究200m 高通滤波对大跨桥上轨道静态不平顺的适应性,选取典型桥梁的静态高低不平顺,分别对原始不平顺和200m 高通滤波后的不平顺进行动力仿真分析,分析结果见说明表9.2.1-4。由该表可知,200m 滤波对行车安全性和舒适性的影响很小。

桥梁	静态不平顺 车速 测量日期 不平顺处理 车速 (km/h) (km/h)		车速 (km/h)	轮重减载率	车体加速度 (m/s ²)
	2020 11 22	200m 滤波前	250	0. 122	0.35
工版小妖	2020. 11. 25	200m 滤波后		0. 122	0.35
卫峰田仍	2021 07 16	200m 滤波前	250	0. 163	0. 41
	2021.07.10	200m 滤波后		0. 163	0.40

说明表 9.2.1-4 典型大跨度桥梁静态高低不平顺 200m 高通滤波前后 动力仿真分析结果

桥梁	静态不平顺 测量日期	不平顺处理	车速 (km/h)	轮重减载率	车体加速度 (m/s ²)
	2021 08 06	200m 滤波前	250	0. 168	0. 74
汕艾涵妖	2021.08.00	200m 滤波后	230	0. 168	0. 74
17 孙迪彻	2022 01 02	200m 滤波前	250	0. 152	0.71
	2022. 01. 03	200m 滤波后	230	0. 152	0. 67
始在训诉	2021. 11. 24	200m 滤波前	250	0. 381	0. 76
998 巴 701 701		200m 滤波后	230	0. 379	0. 75
	2018. 12. 20 2019. 07. 05	200m 滤波前	350	0. 173	0. 41
北舟江桥		200m 滤波后	350	0. 170	0. 42
和血红你		200m 滤波前	250	0. 339	0. 32
		200m 滤波后	350	0. 338	0. 29
	2021 02 19	200m 滤波前	350	0. 266	0.36
裕凑肑桥	2021.03.18	200m 滤波后	550	0. 266	0.38

200m以上波长成分对车体加速度影响较小,但对 60m 弦测 值的影响相对显著,沪苏通、五峰山和裕溪河等特大桥实测静态 高低不平顺滤波前后的 60m 弦测值及对应车体垂向加速度见说明 表 9.2.1-5。由说明表 9.2.1-5 可知,滤波对实测静态不平顺 60m 弦测值的影响与季节和桥式方案相关,滤波前后 60m 弦测值 最大相差 6mm (五峰山桥),但滤波对 60m 弦测最大值的位置基 本无影响。综上,为保证弦测值分析结果能够反映实际车体加速 度,本规范对静态不平顺进行 200m 高通滤波。实际工程中,设 计阶段在保证桥梁结构强度的前提下,不仅对结构在荷载下的变 形明确了控制限值,也对温度、风、列车荷载、轨道不平顺等因

— 14 —

素影响下的行车安全性和舒适性进行了动力性能评估,《高速铁路桥涵工程施工质量验收标准》TB 10725-2018 还对桥梁绝对高程偏差和节段间的相对高差制定了限值,因此,尽管对静态不平顺进行了 200m 高通滤波,但桥梁和轨道的整体变形处于可控状态。

桥梁		工况		位置
		原始静态不平顺 60m 弦测值	11. 17mm	南通侧桥塔附近
	2021.07	200m 滤波后静态不平顺 60m 弦测值	9. 78mm	南通侧桥塔附近
沙革湿栓		车体垂向振动加速度	0.06g/0.03g	南通侧梁端/跨中
伊奶週的		原始静态不平顺 60m 弦测值	11. 72mm	南通侧桥塔附近
	2021.01	200m 滤波后静态不平顺 60m 弦测值	11. 05mm	南通侧桥塔附近
		车体垂向振动加速度	0.05g/0.05g	上海侧梁端/跨中
	2021.07	原始静态不平顺 60m 弦测值	6. 93mm	镇江侧梁端
		200m 滤波后静态不平顺 60m 弦测值	6. 40mm	镇江侧梁端
工政山妖		车体垂向振动加速度	0. 05g	镇江侧梁端
山車山竹	2022. 01	原始静态不平顺 60m 弦测值	13. 86mm	镇江侧桥塔
		200m 滤波后静态不平顺 60m 弦测值	7. 18mm	镇江侧梁端
		车体垂向振动加速度	0.05g	镇江侧梁端
		原始静态不平顺 60m 弦测值	6. 08mm	桥塔位置
裕溪河桥	2021.03	200m 滤波后静态不平顺 60m 弦测值	6. 13mm	桥塔位置
		车体垂向振动加速度	0.032g/0.055g	梁端/跨中

说明表 9.2.1-5 200m 高通滤波前后大跨度桥梁静态高低不平顺 60m 弦测值和 车体垂向加速度

基于综合检测车实测车体垂向加速度和高低不平顺,统计了 250km/h和300km/h条件下60m弦测值与车体加速度的相关关

— 15 —

系, 仿真分析了350km/h条件下60m 弦测值与车体加速度的相关关系, 推荐拟合公式如下:

式中, a 为车体垂向加速度, 单位 m/s²; x 为轨面高低不平顺的 60m 弦测值, 单位 mm。

《高速铁路工程动态验收技术规范》规定车体垂向加速度动态验收限值为 1.0m/s²,根据上述公式,250km/h、300km/h及 350km/h 速度等级下相应的 60m 弦测值分别为 12.7mm、9mm 和 7.01mm。

(4) 大跨度桥梁轨道静态高低长波不平顺控制标准

结合我国大跨度桥梁轨道工程验收, 经一桥一议开展专题研 究提出:赣江、裕溪河、梅溪河、大宁河等特大桥,设计速度 350km/h,铺设无砟轨道,轨道高低不平顺按 60m 弦中点弦测法 测量,高低容许偏差 7mm; 酉水河特大桥,设计速度 300km/h, 有砟轨道固化道床,轨道高低不平顺按 60m 弦中点弦测法测量, 高低容许偏差 8mm; 鳊鱼洲、椒江、五峰山等特大桥,设计速度 250km/h,有砟轨道,轨道高低不平顺按 60m 弦中点弦测法测 量,高低容许偏差 10mm。以此标准,各大跨度桥梁均动静态验 收通过,开通后轨道平顺状态良好。

国铁集团课题《大跨度桥梁铺设无砟轨道技术深化研究》 - 16 -

(2015G001-G) 结合赣江特大桥提出了轨道长波静态高低不平顺 采用 60m 弦容许偏差 7mm 进行验收的标准,并开展了试验监测 工作。监测数据表明,轨道服役状态满足要求,结构动力性能各 项指标均满足相关标准要求。该项目按此标准顺利通过验收,并 于2019 年底正式开通运营。

2021年底, 依托安九铁路鳊鱼洲长江大桥, 完成了 60m 弦 轨道长波静态高低不平顺偏差专项试验。该桥梁设计速度 250km/h, 有砟轨道, 通过预设轨道 60m 弦静态长波 10mm 高低 不平顺, 经综合检测列车 180km/h~275km/h 逐级提速试验, 预 设不平顺区段的轨道动态 (除轨距外)、动车组动力学响应、轨 道结构动力学响应、桥梁动力学响应等指标均满足相关标准 要求。

2022年7月20日至8月8日进行了沪苏通大桥专项试验, 试验车速120km/h~220km/h, 车体垂向振动加速度最大值为 0.065g,轮重减载率最大值0.36。2022年7月14日至7月21日 进行了五峰山大桥专项试验,试验车速160km/h~275km/h, 车 体垂向振动加速度最大值为0.068g,轮重减载率最大值0.27。车 体动力学指标均在规范允许范围内,可认为沪苏通和五峰山桥轨 道平顺状态良好。

在全面总结上述实践经验和科研试验成果基础上,系统梳理 沪苏通、五峰山、裕溪河和赣江等高速铁路大跨度桥梁开通以来 服役现状,提出高速铁路大跨度桥梁轨道静态高低长波容许偏差

— 17 —

可采用 60m 弦中点弦测法测量,对于无砟轨道,250km/h采用 10mm,300km/h采用 8mm,350km/h采用 7mm;对于有砟轨道,250km/h采用 10mm。

2. 大跨度桥梁轨道高程偏差验收

为保证线路实际走向与设计纵断面相符,现行标准均规定轨 道铺设高程与设计高程的偏差限值为10mm,考虑到桥梁温度变 形并不反映桥梁和线路的施工质量,其对行车性能的影响在设计 阶段均已评估通过,且经统计,我国已建成的高速铁路无砟轨道 大跨度桥梁主跨跨径在300m左右,通过施工精细化控制,可以 满足设计基准温度下轨面高程与设计高程偏差10mm的限值规 定,因此将大跨度桥梁轨道的轨面高程与设计高程的偏差规定为 设计基准温度条件下的位置偏差。

表 9.2.1-1 中桥上轨道静态高低不平顺需考虑桥梁温度变形的影响。

国家铁路局

2023年3月9日

— 18 —

分送:住房城乡建设部、交通运输部,国铁集团、国家能源集团、 中建集团,中国中铁、中国铁建、中国通号、中国交建、中 国电建,各设计院,经规院,铁道出版社,局属各单位,机 关各部门。

国家铁路局综合司

2023年3月9日印发

